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This note characterizes the denseness of rational systems

Pn&1(a1 , ..., an) :={ P(x)
>n

k=1 (x&ak)
, P # Pn&1= (n=1, 2, ...),

in C[&1, 1], where the nonreal poles in [ak]�
k=1 /C"[&1, 1] are paired by complex

conjugation. This extends an Achiezer's result. � 1999 Academic Press
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1. INTRODUCTION

We let

Pm(a1 ; ..., an) :={ P(x)
�n

k=1 |x&ak |
, P # Pm= (1.1)

with [ak]n
k=1 /C"[&1, 1], where Pm is the set of all real algebraic polyno-

mials of degree at most m. It is easy to see that Pm(a1 , ..., an) is a linear space
and Pm(a1 , ..., an)/PM(a1 , ..., an) for m<M. We define the numbers [ck]n

k=1

by

ak :=
ck+c&1

k

2
, |ck |<1. (1.2)

When all the poles [ak]n
k=1 are real and distinct, Pn&1(a1 , a2 , ..., an) is

simply the real span of the following system

{ 1
x&a1

,
1

x&a2

, ...,
1

x&an= , x # [&1, 1]. (1.3)
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With respect to the denseness of span[1�(x&ak)]�
k=1 , the following

well-known result is due to Achiezer [1, Problem 7, p. 254]:

Achiezer Theorem. Let [ak]�
k=1 /R"[&1, 1] be distinct. Then

span[1�(x&ak)]�
k=1 is dense in C[&1, 1] if and only if

:
�

k=1

(1&|ck | )=�.

Recently, Borwein and Erde� lyi [3] also proved this by using entirely
different methods.

Note that Pn&1(a1 , ..., an) is still a real rational space when the nonreal
poles form complex conjugate pairs, moreover, >n

k=1 |x&ak | can be
replaced by >n

k=1 (x&ak). So, it is natural to ask whether we can extend
Achiezer's Theorem to the case: the repeated poles are allowed and the
nonreal elements in [ak]�

k=1 /C"[&1, 1] are paired by complex conjugation.
In this note, we consider this question and give an affirmative answer.

More precisely, we have

Theorem 1.1. Let the nonreal elements in [ak]�
k=1 /C"[&1, 1] be paired

by complex conjugation. Then [Pn&1(a1 , ..., an)] are dense in C[&1, 1] if
and only if

:
�

k=1

(1&|ck | )=�. (1.4)

2. PROOF OF THEOREM 1.1

Our proof of Theorem 1.1 is mainly based on the Chebyshev polyno-
mials with respect to Pn(a1 , ..., an) constructed recently by Borwein,
Erde� lyi, and Zhang [4]. The explicit formulae for the Chebyshev polyno-
mials for the system Pn(a1 , a2 , ..., an) are implicitly contained in Achiezer
[1] provided that [ak]n

k=1 /R"[&1, 1] are distinct. It should be
mentioned that they [4] allow repeated poles and nonreal poles in this
system, in which the nonreal poles form complex conjugate pairs (cf. [4]).
We use Tn(x) to denote the Chebyshev polynomial of the first kind with
respect to Pn(a1 , a2 , ..., an). For convenience, we include its construction
here.

Let

Mn(z) :=\ `
n

k=1

(z&ck) (z&c� k)+
1�2

, (2.1)
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where the square root is defined so that Mn*(z)=znMn(z&1) is analytic in
a neighbourhood of the closed unit disk, and let

fn(z) :=
Mn(z)

znMn(z&1)
. (2.2)

Then the Chebyshev polynomial of the first kind for the rational space
Pn(a1 , a2 , ..., an) is defined by

Tn(x) :=
fn(z)+1� fn(z)

2
, x=

z+z&1

2
, |z|=1. (2.3)

In fact Tn(x) is a rational function. More precisely, we conclude that
Tn # Pn(a1 , ..., an) (cf. [4, Theorem 1.2]). It is shown [4] that these
Chebyshev polynomials preserve almost all the elementary properties of the
classical Chebyshev polynomials.

Lemma 2.1. Let the nonreal elements in [ak]n
k=1 /C"[&1, 1] be

paired by complex conjugation, and let Tn be the Chebyshev polynomial of
the first kind associated with Pn(a1 , ..., an). Then the best approximation to
1 from Pn&1(a1 , a2 , ..., an) is

p :=1&Tn�A0 . (2.4)

Moreover, we have

&1& p&[&1, 1]=1�|A0 |, (2.5)

where A0 is the constant term in Tn :

A0 :=
(&1)n

2 \(c1 } } } cn)&1+c1 } } } cn+ . (2.6)

Proof. Clearly, there exists some r # Pn&1(a1 , ..., an) such that

Tn(x) :=A0+r(x).

Then we conclude that

A0= lim
x � �

Tn(x),

furthermore, by the construction of Tn , it is easy to show (2.6) (cf.
[4, Proposition 4.1]). The conclusions of (2.4) and (2.5) can be proved by
the same fashion as Lemma 2.2, that is by the counting zeros' argument.
We omit it. K
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Let a # R"[&1, 1] such that a � [ak]n
k=1 , then we define the constant

c such that

a=
c+c&1

2
, |c|<1. (2.7)

Let Tn+1 be the Chebyshev polynomial of the first kind with respect to
Pn+1(a1 , ..., an , a). Lemma 2.2 gives the best approximation to 1�x&a from
Pn(a1 , ..., an).

Lemma 2.3. Let the nonreal elements in [ak]n
k=1 /C"[&1, 1] be

paired by complex conjugation. Then, for a # R"[&1, 1] and a � [ak]n
k=1 ,

the best approximation to 1�x&a from Pn(a1 , ..., an) on [&1, 1] is

q :=
1

x&a
&

Tn+1(x)
Bn+1

(2.8)

and

" 1
x&a

&q(x)"[&1, 1]

=
1

|Bn+1 |
, (2.9)

where

Bn+1 :=&\c&c&1

2 +
2

`
n

j=1

1&ccj

c&cj
. (2.10)

Proof. We prove it by the counting zeros' argument. Since a # R"
[&1, 1] and a � [ak]n

k=1 , we then can construct the Chebyshev polyno-
mial of the first kind Tn+1 for Pn+1(a1 , ..., an , a) and it can be expressed as

Tn+1(x) :=s(x)+
Bn+1

x&a
,

where r # Pn(a1 , ..., an). Since

Bn+1= lim
x � a

(x&a) Tn+1(x),

then it is easy to show (2.10) by a simple calculation. Moreover, q(x)=
&s(x)�Bn+1 . Note that (cf. [4, Theorem 1.2]) &Tn+1&[&1, 1]=1, we have

" 1
x&a

&q(x)"[&1, 1]

=
1

|Bn+1 |
. (2.11)
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If there exists some t # Pn(a1 , ..., an) such that

" 1
x&a

&t(x)"[&1, 1]

<
1

|Bn+1

, (2.12)

recall that (cf. [4, Theorem 1.2]) there exist n+2 nodes: &1= yn+1<
yn< } } } < y1< y0=1 such that Tn+1( yj)=(&1) j, j=0, ..., n, n+1. Hence,

Tn+1

Bn+1

&\ 1
x&a

&t(x)+=&q+t # Pn(a1 , ..., an)

changes sign between any two consecutive extreme points of Tn+1 .
Furthermore, t&q has at least n+1 zeros in (&1, 1) and consequently, it
must vanish identically. This contradicts (2.12). K

Proof of Theorem 1.1. We first prove only if part. Note that |ck |<1
(k=1, 2, ...) and by (2.6) we then have

`
n

k=1

|ck |<
1

|A0 |
=

2 >n
k=1 |ck |

1+>n
k=1 |ck |2�2 `

n

k=1

|ck |.

If [Pn&1(a1 , ..., an)] are dense in C[&1, 1], then by Lemma 2.1 we have
1�|A0 | � 0(n � �), that is, >�

k=1 |ck |=0, this is equivalent to (1.4).
Next we prove if part. By (2.10) we have

1
|Bn+1 |

� \ 2
c&c&1 +

2

`
�

j=1
} c&cj

1&ccj } (n � �).

Recall that >�
k=1 (c&cj )�(1&ccj) is an infinite Blaschke product. Then by

[6, Theorem 1, p. 281] or [5, Theorem 15.23, p. 311] we conclude that
(1.4) implies

`
�

j=1
} c&cj

1&ccj }=0,

consequently, combining (2.9) we see that 1�(x&a) can be uniformly
approximated in [Pn(a1 , ..., an)] on [&1, 1] for a # R"[&1, 1]. Also, if
(1.4) holds, then from the proof of only if part and Lemma 2.1, we see that
any constant can be uniformly approximated in [Pn&1(a1 , ..., an)]. Note
that every function R # Pn(a1 , ..., an) can be written in the form

R(x)=bn+R0(x), bn # R, R0 # Pn&1(a1 , ..., an),
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and Pn&1(a1 , ..., an)/PN&1(a1 , ..., aN) for n<N. Thus, (1.4) implies that
1�(x&a) can be uniformly approximated in [Pn&1(a1 , ..., an)] on [&1, 1].
Note that a # R"[&1, 1] is an arbitrary number, so we can take a to be
any of a sequence of distinct number such that they satisfy the condition
(1.4), that mean 1�(x&a) can be taken as any of a dense sequence of
distinct basis functions. Therefore, if part follows. K
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